
_. 1/ ;L .x

Virtually-Synchronous Communication
Based on a Weak Failure Suspector

Andre Schiper
Aleta Ricciardi*

..//-38
I

/{-.

TR93-1339 _) " _I
April 1993 i

¢

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

*The first author is on leave from Ecole Polytechnique Federale de Lausanne,
Switzerland. His research is supported by the "Fonds national suisse" under contract
number 21-32210.91, as part of the European ESPRIT Basic Research Project
Number 6360 (BROADCAST). The second is supported by DARPNNASA Ames
Grant NAG 2-593, and by grants from IBM and Siemens Corporation.

Virtually-Synchronous Communication

Based on a Weak Failure Suspector

Andr_ Schiper, Aleta Ricciardi*

Department of Computer Science, Upson Hall

Cornell University

Ithaca, NY 14853-7501

April 28, 1993

Abstract

Failure detectors (or, more accurately Failure Suspectors - FS) ap-

pear to be a fundamental service upon which to build fault-tolerant,

distributed applications. This paper shows that a FS with very weak

semantics (i.e. that delivers failure and recovery information in no

specific order) suffices to implement virtually-synchronous communi-

cation (VSC) in an asynchronous system subject to process crash fail-

ures and network partitions. The VSC paradigm is particularly useful

in asynchronous systems and greatly simplifies building fault-tolerant

applications that mask failures by replicating processes. We suggest

a three-component architecture to implement virtually-synchronous

communication : 1) at the lowest level, the FS component; on top of

it, 2a) a component that defines new views, and 2b) a component that

reliably multicasts messages within a view. The issues covered in this

paper also lead to a better understanding of the various membership

service semantics proposed in recent literature.

"The first author is on leave from Ecole Polytechnique F_d_rale de Lausanne, Switzer-
land. His research is supported by the "Fonds national suisse" under contract number

21-32210.91, as part of the European ESPRIT Basic Research Project Number 6360

(BROADCAST).The second is supported by DARPA/NASA Ames Grant NAG 2-593,
and by grants from IBM and Siemens Corporation.

1 Introduction

There have recently been several papers about membership services in asynchronous sys-

tems [2, 12, 13, 17, 18, 19, 20]. A membership service is responsible for giving each process

(consistent) information about the operational processes in the system. A process calls this

information its view of the system processes. A membership service typically reacts to process

crashes or recoveries, leading it to define a set of views. The membership services mentioned

vary according to the underlying failure model considered, as well as the properties they

provide with respect to the set of views delivered to each process: (e.g. whether another

view may exist simultaneously, the degree of agreement among members):

[17, 18] consider processes with crash failure semantics, excluding network partitions.

[19, 20] consider systems in which processes may crash and the network may partition.

However, despite network partitions, this membership service defines only majority

views - a unique, totally-ordered sequence of views. Such a membership service is said

to have linear semantics.

The membership services described in [1, 2, 13] consider the same failure scenario as

above, but only define a partial order on the views. That is, if the system is partitioned

in two (or more) subnetworks then two (or more) views, one in each subnetwork, may

exist concurrently.

Concurrent views offer an interesting extension to membership services, and force us to

consider a further semantic distinction based on whether concurrent views are permitted to

intersect. If two concurrent views may overlap, we say the membership service semantics

are weak-partial, if they may not we say the semantics are strong-partial. Among those

that permit concurrent views, [2] appears to be a strong-partial membership service. [13]

considers both strong-partial and weak-partial membership services, and [1] and [12] consider

only weak-partial membership service. These variants raise a new, pertinent question: when

is a strong-partial service required, and when does a weak-partial membership service suffice.

The objective of this paper is to suggest an answer to this question, by showing that a strong-

partial membership service is intimately related to virtually-synchronous communication. We

do not discuss when a linear membership service is required.

The idea of virtually-synchronous communication (VSC) was first introduced by Isis [3, 4].

VSC can be understood as rule for ordering message deliveries (reliable multicasts) with

respect to view changes (received from the membership service). We give a precise definition

2

for VSC in Section 5.4. VSC defines a powerful model for building fault-tolerant processes

that mask failures by replication. It has also been argued [5] that ordering message deliveries

consistently around process failures and recoveries is a fundamental part of any distributed

computation; thus VSC is a vital primitive for inherently-distributed programming. Relat-

edly, many common distributed applications are more easily understood and solved if they

can make use of VSC [21]. Finally, if the VSC abstraction we define in this paper is aug-

mented with a majority requirement, [22] shows it is a powerful model in which transaction

commit is easily (albeit probabilistically) implemented. Understanding that the VSC ab-

straction is more basic than the transaction abstraction gives broader insight to the problem

of building fault-tolerant applications. However, we note that solving VSC is not equivalent

to solving consensus [10].

Traditionally virtually-synchronous communication has been implemented with a two com-

ponent architecture: a membership service, and on top of it, multicast component. However,

understanding the relationship between a membership service and virtually-synchronous

communication has lead us to consider a three-component architecture, with (1) a Fail-

ure Suspector component FS delivering information about the communication topology, (2)

a View Component VC defining views, and (3) a Multicast Component MC implementing

virtually-synchronous communication. We divide the functionality of the traditional mem-

bership service between our FS and VC components.

In addition to increasing our understanding of the relationship between any membership

service and virtually-synchronous communication, this architecture allowed us to specify

precisely the FS semantics needed to guarantee VC and MC liveness. One weakness of

previous work in this area has been a lack of precise semantics for the FS part of the system.

Explicitly, the paper shows:

• that virtuaily-synchronous communication satisfying the definition given in Section 5.4

can be implemented with a modular, three-component architecture for system models

with both process crash failures and network partitions (i.e. link failures). We start

with a very simple model, and from it construct a useful communication primitive for

fault-tolerant, distributed applications.

• how to define concurrent views that have empty intersections. That is, how to imple-

ment strong-partial membership semantics in a system that may partition. The basic

idea is to define a view as a set of pairs (proc id, proc sequence number).

• that if we remove the MC component from the architecture (e.g. if virtually-synchronous

communication is not needed), then the view component defines views that do not

satisfy the empty intersection condition (i.e. giving a membership service with a weak-

partial semantics).

Section 2 describes our low-level system model and the interaction of the three components.

Section 3 gives a precise semantics for the failure suspector. Sections 4 and 5 sketch how to

implement the vcp and MCp components, and Section 6 completes the vcp and MOp protocols.

We conclude in Section 7.

2 System Model

Our low-level system model consists of an infinite name space of process identifiers, Proc =

{pl,p2,..., }. The name space is infinite to model infinite executions in which processes

continually fail and recover. At any point in time, however, there are only a finite number of

executing processes under consideration and we restrict our attention to these. For this finite

set of executing processes, we assume a completely-connected network of FIFO channels.

Processes communicate by passing messages over these channels, though they too may fail.

The system has no global clock, and message transmission delays are unbounded. Processes

fail by crashing, which we model by the local event cras_. We model the recovery of a

process with a new identifier. A process p may (1) send a message to another process, (2)

deliver a message sent by another process q, and (3) perform local computation.

A history, hp, for process p is a sequence of events beginning with the event start_ and

1 k for 0 < k. A cut is anterminating, if at all, with the event crashv: hv = start_ • ep... ev,

n-tuple of process histories, one for each p E Proc. We assume familiarity with inter-event

causality [15] and with consistent cuts [8].

Crash failures are surprisingly difficult to handle in an asynchronous system. Fischer,

et.al [10] show that, because it is impossible to distinguish a crashed process from one

that is just very slow, any problem requiring "all correct processes" to agree on some value

cannot be solved deterministically; that is, no deterministic protocol can make progress if it

must also make accurate process failure detections. One way around this is for asynchronous

systems to incorporate some mechanism for suspecting failures, as well as a means of han-

dling failure suspicions consistently (e.g. p may suspect q faulty while r may not; perhaps

r and/or q even suspect p). Our system model assumes a failure suspector that eventually

4

newView,,() IVCp MCp

view termination

Figure 1: FSp, MCp, and vcp interaction for virtually-synchronous communication.

suspects a crashed process,] which suffices to ensure our protocols make progress. We do

not require anything more of the failure suspector.

Each process has three components that interact to implement the virtually-synchronous

communication primitive for application-layer processes (Figure 1). The Failure Suspector

(FSp) is at the lowest level and notifies both the Multicast Component (MCp), and the View

Component (vcp) about suspected changes in the communication topology. Such changes

arise from actual process and link failures, as well as high processor loads and heavy net-

work traffic (indistinguishable from true failures), vcp defines p's current view, Viewp(), an

approximation of the set of processes with which p can communicate, and sends Viewp() to

MCp. MC v is responsible for reliably multicasting application-layer messages until it receives

an accessibility-change notification from FSp. These notifications signal a suspected change

in the communication topology and the attendant need to alter Viewp(). However, neither

MC v nor VC v can do this naively since virtually-synchronous communication requires that

members of Viewp() that also accompany p to its next view receive the same set of messages

that were multicast within Viewv() (We make this definition precise in Section 5). To ensure

this, MCp delivers all outstanding multicasts, and does not issue new multicasts except to

forward those that have been only partially delivered. Viewp() is safely terminated when all

messages multicast in it are delivered at all sites that MCp believes non-faulty. When MCp

detects this condition (Section 4) it informs vcv, which then determines a new view for MC,

from the accessibility notifications it received from FSp.

Section 3 describes the properties our Failure Suspector components must satisfy. These are

weak yet reasonable requirements, and are easily implemented in any asynchronous system.

Section 4 discusses vc v, and Section 5 discusses MCp. These components execute protocols

1This can easily be implemented with time-outs.

5

to detect global properties [8, 16].

3 The Failure Suspector

Given process p, FSp emits a sequence of not-corm(q) and comm(r) suspicion messages to MCp

and vc v. Since the system is asynchronous we cannot guarantee the accuracy or timeliness of

these suspicions; the most we can require is that FSp eventually suspects true crashes and re-

coveries. This is not unreasonable. It is known that fault-tolerant protocols in asynchronous

systems cannot make progress if they are required to make accurate failure determinations.

Our approach introduces an inaccurate failure suspector to gain liveness. On the other hand,

we cannot require FSp to suspect all periods of transient inaccessibility - a network partition

may repair before it is noticed.

Since, in theory, FS v may suspect processes arbitrarily, we have divorced FSp implementation

from the problem at hand. In a real system, FSp might take cues from the underlying

communication layer, the operating system, response delays, and so forth. 2

On every consistent cut c, FSp maintains two non-intersecting sets, CommSetp(c) and NotCommSetv(c).

When FSp suspects q E CommSetp(c), q is removed from CommSetp(c) and is thereafter a

member of NotCommSetp(c). Whenever these sets change, FSp notifies VCp and MOp by

emitting the appropriate comm() or not-comm() messages.

We have a reciprocity condition for (perceived) partitions, as well. To model the nature of

network partitions, we require eventual reciprocity of inaccessibility suspicions. That is, if

FSp suspects q then eventually either FSq suspects p or q fails.

A logical formula holds on a consistent cut. The membership of an indexical set of processes

depends on when it is considered. In our model, 'when' translates to consistent cuts, the only

physically-realizable instances. We use the following formulas and indexical sets to specify

the behavior of FSp.

* NOTCOMMp(q) holds on c if q E NotCommSetp(c)

. COMMp(q) holds along c if q E ComrnSetp(c)

• DOWNq holds along c = (hi,..., hq,..., h,) if crashq is the last event in hq

2For example, to detect failures FSp could query a process, deeming it inaccessible if it does not repond

in a timely fashion (inaccurate, but satisfying the requirement). We might put the onus on a process to

announce its recovery.

• UPq holds along c = (hi,..., hq,..., hn) if crashq is not an event in hq.

Non-triviality Conditions for FSp

Crashes If q crashes, then eventually either p crashes or FSp suspects q is unreachable:

DOWNq =_ _(NoTCOMMp(q)V DOWNp)

Recoveries If q begins executing and is reachable, then eventually either p crashes or FSp

suspects q is reachable:

uPq ==__(COMMp(q)V DOWNp)

Reciprocity If FSp suspects q is inaccessible, then, if q does not crash, it eventually suspects

p is inaccessible:

NOTCOMMp(q) ::b O(DOWNq V NOTCOMM+(p))

This is an artifact of p suspecting q: since p ceases communicating with q, p is, in fact,

inaccessible to q.

Propagation Conditions for FSp

Finally, we require failure suspectors to gossip among themselves.

Inaccessibility Propagation If FSp believes, on cut c, it cannot communicate with q then

it tries to propagate this belief to every FSr for r E CommSetp(c):

Accessibility Propagation If FSp believes, along c, it can communicate with q then it

tries to propagate this belief to every FS_ for r E CommSetp(c):

COMM,(q) _ _(COMM,(q)V NOTCOMM,(p))

3.1 Related work

Before discussing the other components, we discuss the relation between this and other work.

In [7], Chandra and Toueg solve Distributed Consensus in an asynchronous system using a

Failure Suspector, W, that satisfies certain (weak) requirements. [6] further shows that W

is the weakest suspector that can be used to solve Distributed Consensus. While we do not

consider consensus in this paper we said in the Introduction that adding a majority require-

ment to the VSC abstraction, gives a simple, probabilistic solution to transaction commit.

Since there are no fundamental differences between solving consensus and atomic commit

problem, how are both approaches related (we will not, hereafter, distinguish consensus from

atomic commit)?

First it should be clear that our Failure Suspector is not weaker than W. More important,

[7] also places a majority requirement on processes before W can be used to solve consensus.

To relate the two approaches, consider a generalization of consensus:

• suppose consensus is to be solved more than once, and let consensus(i), for i > 0, be

tile i th instance of the consensus problem;

• let Proc be the initial set of processes that solve consensus(I);

• consensus(i + 1) begins only after consensus(i) has been solved;

• for consensus(i), i > 1, the processes chose their initial state randomly from the set

(o,1}.

In [7], consensus(i) (for each i) would be solved by the same static set of processes Proc. The

majority requirement to solve consensus(i) is thus similar to a static voting scheme in the

context of handling replicated data [11]. This is because [7] consider that failure suspicions

are never stable: a process p believing failed(q) can always change its mind.

In contrast, in the VSC model, failure beliefs are stable each time a new view is defined.

Thus for i # j, consensus(i) and consensus(j) need not be solved by the same set of

processes. Continuing the replicated data analogy, the majority requirement in the VSC

model is similar to the dynamic voting scheme [9], which has been shown to lead to higher

data availability than the static voting scheme.

8

4 The View Component

The view component operates whenever a link failure repairs, a process begins executing,

recovers after a crash, and whenever the multicast component informs it that the current

view has terminated (Section 5). vcp defines p's current view by interaction with other vc

components, and by using F% information.

VCp defines a new view when it detects (or learns about through some other vc component)

agreement on CommSetv() among the members of CommSetv(). The new view will be the

largest subset of processes (containing p) satisfying this agreement.

4.1 The View Component Algorithm

In this section we outline how vcp detects or learns about CornmSetp() agreement.

When vcp is activated, it knows a near approximation of CommSetp() from FSp. 3 Whenever

vcp receives an comm(r) message from FSp, it updates this approximation. Along cut c, vcp

uses a deterministic function, vc-Coord(p), 4 on the set CommSetp(c) which returns a unique

process identifier, and satisfies

(CommSet,(c) = CommSetq(C))=_ (vc-Coovd(p)= vc-Coord(q)).

For example, vc-Coord(p) might be "choose the 'smallest' identifier from CommSetp(c)."

Each process also maintains a local counter, se@, which is incremented every time vcp con-

siders vc-Coord(p) to have changed (this is not necessarily every time CommSetp(c) changes.

For liveness, however, vc-Coord(p) must change when vev receives not-coram(vc-Coord(p))

from FSJ. The counter seqp is initially zero and is essential in allowing us to define non-

intersecting, concurrent views. The tuple (p, seqp) fully describes p on any consistent cut.

Finally, the formula COMMSETEQ(S) holds on c if and only if all p G S have identical

CommSet() sets at c. That is,

COMMSETEQ(S) ae_f A (CommSetp(): CommSetq())
p,qES

3There may be notifications from FSp that have not yet reached vcp.
4Technically, we should name some cut explicitly since the function's value depends p's indexical can-

communicate-with set. We omit the cut reference, but with the understanding that vc-Coord(p) has a

temporal dependence. In fact p never knows which particular cut it is on, but at any point in its execution

vcp has some set of process identifiers that satisfy a certain condition. It determines a coordinator by

applying some rule to this set. The presence of c would only clarify matters for the omniscient reasoner.

In our protocol, each p sends its current CommSetp() and current seqp number to vc-Coord(p)

every time CommSetp() changes.

4.2 Defining the New View

Let x = vc-Ooord(p), and S = CommSet_(c) for some cut c. Then vc_ receives CommSetp()

for p E S. Whenever it receives a different CommSetp() from some p, vc_ discards the

previous one and checks whether COMNSETEQ(CommSet_()) holds. If it does, vc_ sets the

new view, Views(), to

Views() = V = {(p, seqp) l P E ComrnSet_()} (1)

The coordinator g then sends the new view to each vcp (for p C V) which then delivers the

view to MCp. MCp regains execution control and begins multicasting again. Unfortunately,

as COMMSETEQ(CommSet_()) is not a stable property (i.e. once true, forever true) we must

take care in announcing the new view. We return to this issue in Section 6.

4.3 The Partial Order

Correctness of vcp means that the coordinator successfully sends the new view to the vc

components of all reachable members in the new view. We will henceforth use V to denote

the (local) view that is agreed-upon by all the members of V.

Since process histories axe linear, it makes sense to talk about the x th version of a process's

(local) view - we denote this by Vie_r_p.

Definition Given two agreement views V and V', V--<IV' if and only if there is some p in

V A V' such that V = ViewS, and V' = Viewp +1. The transitive closure of -<_r is denoted

_. |

It is not hard to see that the views defined by the collection of vcp components are partially

ordered by -<. We say V and V' are concurrent if and only if they are not --<-related.

Proposition 4.1 trivially follows from the definition of views (Equation l) and the increment

rule for seqp.

Proposition 4.1 Let V and V' be concurrent views. Then V N V' = O.

10

5 The Multicast Component

The Multicast Component of process p, MCp, is responsible for implementing virtually-

synchronous communication. MCv operates in two modes. In one mode it multicasts messages

to the members of its current view Viewp(). In the other mode, it flushes outstanding multi-

casts to ensure they satisfy virtually-synchronous communication semantics, then terminates

the current view. The transition from multicast mode to termination mode is triggered by

any rSp not-comra() or conm() message. In this section, we define VSC semantics and the

protocols MCp uses.

5.1 Definitions

Informally, virtually-synchronous communication is such that, for any view V, the processes

of view V that mutually believe each other alive deliver the same set of multicasts. 5 To make

the definition of VSC precise we need to define formally the set of messages considered to

have been multicast in V, as well as the subset of processes that deliver them.

Definition Given a view V, message m is a V-multicast if it was sent by some p along a

cut c such that Viewp(c) = V. II

Definition (VSC) Let V-_IV'. Then communication in a system is virtually-synchronous

if and only if all processes in V and in V' delivered the same set of V-multicasts. Moreover

no message is delivered in more than one view. II

It is important to notice that process sequence numbers are not used in the definition.

These are low-level pieces of information; the application layer should only be concerned

with process identifiers. For an application-layer process, VSC ensures two processes that

if they progress together from one view to another, then they delivered the same set of

messages in the first view. As a result, if process state is determined by an initial state and

the set of multicasts delivered to the process, VSC means that if processes begin executing

in view V in the same state, then switch together to view V', they will begin executing in

V' in the same state.

SFor simplicity, we omit other forms of communication. Non-multicast communications do not introduce

new problems.

11

5.2 Two Modes of Operation

The component MCp operates in two modes:

1. in normal mode MCp reliably multicasts messages issued by the application layer of p,

and delivers to the application layer multicasts it receives from other MCs;

2. in view-termination mode MOp does not multicast new messages; instead it attempts

to flush outstanding multicasts to ensure the VSC semantics.

After receiving a view from vcp, MCp is in normal mode. It enters view-termination mode as

soon as it receives any (in)accessibility notification from FSp. When view-termination mode

ends, MCp gives control back to vc v. MOp is inactive until it receives a new view from VCp,

whereupon MOp begins normal mode again.

5.3 MCp Normal Mode

Suppose vcp defines a view V = Viewp() and delivers this to MCp. Recall that views are sets

of tuples, which we call process signatures:

Viewp() = {aq = (q, seqq)}.

Upon receiving Viewp(), MCp enters normal mode, in which it multicasts and delivers mes-

sages. Each message m issued by the application layer of process p is multicast by MCp to

all q E V. Before issuing the message, MCp adds ap to m. Let sender(m) be the signature

of the process from which m originated.

When MOp receives a message the following sequence of events occurs:

1. MCp delivers m (to the application layer) if sender(m) E V, and discards m otherwise;

2. MCp also buffers any message it receives and delivers in V until it knows all other

processes in V have received m. 6 When m is received by all processes in V we say it

is stable.

By delivering only V-multicasts, the normal mode ensures that no multicast can be delivered

in more than one view (see the VSC definition).

6There are many standard ways of achieving this - e.g. piggybacking information on messages.

12

5.4 MCp View-Termination Mode

Consider a view V = Viewp(). Component MCp switches from normal mode to view-

termination mode after receiving from FSp either 1) nol;-coaun(q) for q E Viewp(), or 2)

comm(r) for r _ Viewp(). This is because whenever a change in the communication topology

is detected a new view must be defined reflecting that change. However, before defining a

new view, MC in view-termination mode must ensure the VSC definition is satisfied.

Once MOp enters view-termination mode, it need only consider relevant not-comm() events

from FSv to terminate V. Thus, while executing in view-termination mode, MCp builds its

own approximation of NotCornmSetp(). This means failure notifications have a permanent

effect until view-termination mode ends: coram(q) received by MOp in view-termination mode

after not-coma(q) (for example due to a partition) cannot undo the not-comra(q) information.

Just as a new view for p is defined according to agreement on CommSet()s, successfully

terminating V involves partitioning V according to NotCommSet() agreement.

Definition The indexical set Survivesv(V) is V minus the set of processes MCp believes failed

in V:

Survives,(V) = V- {(q, seqq) l NoTCOMMp(q) }

II

Before we can explain how to ensure VSC, we need the following data structures.

Definition Consider V = Viewp() and consistent cut c. The vector msgp(V, c) (of size I V I)

is defined such that:

• its pth component, msgp(V, c)[p], is the number of V-multicasts that originated from p

(up to c);

• for q E V, q # p, its qth component, msgp(V, c)[q], is the number of V-multicasts MCv

delivered up to c that originated from q. II

Definition (View Terminated) Consider view V and S such that 0 :fi 5 C_ Ids(V) (where

Ids(V) is the set of process identifiers appearing in V). Then vT(V, S) holds along cut c if

and only if

A ((msa,(V,c)=ms,,(Y,c))^ (S.,vives,(V,c)=So,vi es,(V,c)))
p,qES

It is not hard to see S = Ids(Survivesv(V)). II

13

In other words VT(V, S) is true exactly when the processes in S agree on both the messages

multicast in V and on their respective Survives(V) sets. For MCv, detecting termination of

V = Viewp() is thus reduced to detecting VT(V, S) (for p E S _C Iris(V)).

Having detected VT(V, S), whether S = Ids(V) or S C Ids(V) is important in determining

the new view. In the first case, whatever view, V', vcv later defines, VSC is satisfied with

respect to the pair (V, V'). In the second case MCv must pass Survivesp(V) to vcv; we will

want the new view to be a subset of Survivesp(V).

To guarantee that every non-crashed process in V eventually detects VT(V,S) for some S,

MCp behaves as follows in view-termination mode:

• it stops multicasting new messages; z

• it rejects any message m such that sender(m) _ Survivesp(V).

upon receiving not-con(q) from M% (for q E V), MOp signs and forwards any V-

multicasts originating from q that are still in p's buffer (Section 5.3). MC v then removes

these messages from its buffer. MCq rejects the re-issued message if NOTCOMMq(p)

holds (i.e. if UCq has received not-con(p) from FSq). s

Proposition 5.1 Consider view-termination mode as described above. Then for each p E V,

there exists a set, Sp such that p E Sp and VT(V, Sp) holds.

Pttoor (sketch) We introduce the following notation:

• VTI(V, S) de=f

def
• VT2(V,S) =

Ap,qeS mSgp(V) = msgq(V)

Ap,qeS Survivesp(V) = Survivesq(V))

,¢t
Consider p e V. We build a sequence so,...,S_,...,Sp, where k/i, p e S_ and Sip c_ Ids(V),

such that finally vT(V,S_) holds. Initially take SO = Ids(V). The proof ends as soon as

vT(V,S_) holds, for some i. If not, then VTI(V, SIv) or VT2(V,S/v) does not hold. We obtain

S_+a from Sip by removing a process (if necessary). Because (1) SO is finite, (2) the number of

messages sent in a view is finite once view-terminaton mode is started (processes do not issue

7If the network were a broadcast domain, M% could continue multicasting using a new signature (p, seqp +

1). The problem for less general environments is that the new multicast view (destination set) is not yet

known.

SDuplicate messages are recognized and discarded as usual.

14

new multicasts in this mode), and (3) VT(V, {p}) is trivially true, the construction finally

ends with S_ such that VT(V, S_) holds. We briefly discuss the proof reasoning for the case

when either VTI(V, Sir) or VT2(V, S/p) does not hold.

(a) If VTI(V, Sip) does not hold, then the message set of some q in Sip differs from p's, in some

component:3q, r e Sip : (msgp(V)[r] _ msgq(V)[r]). If eventually these sets become equal,

then take S_+1 = Sir. If not (i.e., msgp(V)[r] never equals msgq(V)[r]), then either DOWN_,

or NOTCOMM_(p), or NOTCOMM_(q) holds. So suppose NOTCOMM_(p) holds (analogous

arguments hold for NOTCOMMr(q) and DOWNr). Then eventually NOTCOMMp(r) holds

(from FSp Reciprocity). The Reissuing rule in view-terminaion mode means that p will

forward to q all messages it received from r that q did not. However, since the message

sets never agree this transfer will not succeed completely before NOTCOMMq(p) eventually

holds. Reciprocity ensures that NOTCOMMp(q) holds, and at this point we define S_+1 to be

sip- {q}.

(b) If VT2(V, Sip) does not hold, then there is some q in Sip such that Survivesp(V)

Survivesq(V). Without loss of generality let r e Survivesq(V) - Survives,(V). Then In-

accessibility Propagation and Reciprocity mean that eventually either NOTCOMMq(r), or

NOTCOMMp(q) holds. In the first case S_+1 to be Sip - {q}; in the second case, take

.

5.5 An Algorithm to Detect vT(V_ S)

Like the vcp algorithm detecting COMMSETEQ(), the MCp algorithm detecting VT(V, Sp)

relies on a coordinator process. MCp determines its view-termination coordinator with a

deterministic function, mc-Coord(p), on the set Survivesp(V, c). We require that for p and q

in V, with identical Survives(V) sets, mc-Coord(p) = mc-Coord(q).

Let X = mc-Coord(p). Then X attempts to detect VT(V, Survivesx(V)). MCp also increments

the sequence number counter, seqp, whenever MOp considers mc-Coord(p) to have changed (for

liveness, the function mc-Coord(p) must change whenever M Cp receives not-comm(me-Coord(p))

from FSp).

Process p sends msgp(Y), Survivesp(Y), and seqp to mc-Coord(p) when MCp first considers

mc-Coord(p) to be its coordinator, and whenever msgp(Y) and Survivesp(V) are modified.

Ifx = mc-Coord(p), then:

VT(V, Survives(V))<=_ A (msgx(V) = msgp(V)A Survivesx(V) -- Survivesp(V))
pESurvivesx(V)

15

Proposition 5.2 Consider a view V, with p 6 V and the view-termination protocol de-

scribed above. Then eventually, either p crashes or it detects VT(V, Survivesx(V)).

PROOF (sketch) The proof is similar to that of Proposition 5.1. Here, we consider the

perspective of X = mc-Coord(p). The problem is that, due to transmission delays, X may

not detect VT(V, Survives×(Y)) as soon as it holds (transmission of msgp(V) and Survivesp(V)

from p to X).

There are two cases: eventually X receives the messages enabling it to detect VT(X, Su rvives×(V)),

or failures prevent X from detecting it. In the second case, if both COMMp(X) and COMM×(p)

hold, we can use the iterative construction, from the perspective of X, in the proof of Propo-

sition 5.1. Otherwise we must consider the iterative construction with respect to X', the

coordinator replacing X once it is no longer a member of Survivesp(V). II

Finally, the fact that VT(V, 5) is not stable poses the same problems as those posed by

COMMSETEQ()'s instability. We consider both in the next section.

6 Instability of COMMSETEQ() and VT(V, S)

As described in the previous sections, once vcp learns CoMMSETEQ(ComrnSetp()) it switches

control to MCp; switching control from MOp to VCp is based on detecting vw(Viewp(),S).

In both cases, the relevant property is not stable - it may become false after holding

along some cut. Let switch(vc, V') be the message announcing the new view, V', and

switch(MC, Survives()) be the message announcing termination of view V.

Since neither COMMSETEQ(S) nor VT(V, S) are stable properties, we can arrive at the fol-

lowing situationg:

Take p, q 6 V such that p and q believe each other accessible, and let x be their mutual

vc coordinator (_ = vc-Coord(p) = vc-Coord(q)). Suppose vc_ determines the new

view, V' (tc,p,q 6 V'), sends switch(vC, V') to p only, and then crashes, vcp, upon

receiving switch(vc, V'), adopts Viewp() = V' and switches control to MCp in normal

mode.

• Now suppose that in addition to vcq not getting switch(vC, V'), FSq notifies VCq that

is inaccessible; q continues executing in vcq waiting for some new coordinator x' to

9While we illustrate instability with COMMSETEQ() and the switch from vcp to MCp, a similar situation

arises for VT(V, .5') as well.

16

inform it of the new view. In particular, supposen' = p.

Since p and q continue to believe each other accessible, FSq gossips not-torero(x) to FSv.

At this point, MCv enters view-termination mode for view Viewp() = V', and q is still

executing in vcq waiting to receive the successor view to V. Observe that unless one

of the processes crashes or a network partition splits them, p and q need never believe

each other inaccessible.

For vcq to make progress, its coordinator vcp must tell it some new view. Unfor-

tunately, vcp cannot begin executing until MCp leaves view-termination mode. MCp

cannot leave view-termination mode until it receives Survivesq() from MCq (after all,

q G V' and q G CommSetp()). In other words, p and q are deadlocked because their

execution controls are out of phase. The control discrepancy prevents either one (VCq

or MCp) from making progress until one of them believes the other inaccessible - q is

stuck in vcq, and p is stuck in MOp.

While processes being out of phase is not always destructive, and in fact is quite natural

whenever partitions occur, it is destructive in this case since it induces deadlock. The

following precludes deadlock.

6.1 Component-Switch Protocol

Let ,_ be shorthand for vc-Coord(p) when vc v is executing. We describe the protocol only

for the switch from vcv to MCp; the situation is analogous for the reverse switch. Let

V = Viewp(). We define the following concepts as depicted in Figure 2:

From Section 4, each accessibility notification from Fs v forces vcp to inform its coor-

dinator vc_ of the change to CommSetp(). Let VC-alertv() denote the message vcp

sends to vc_ to inform vc_ of the change to CommSetv().

Let FS- VC-Notifyp(V') be the set of not-comm(q) and comm(r) accessibility notifications

vcp received from FSv after sending its first CommSetp() to any coordinator and before

receiving switch(VC, V') from vc_;

So given V' and FS-VC-Notifyv(V'), vcp can infer which VC-alertv() messages reached vc_

before it detected COMMSETEQ(CommSet_()) and which did not. Let FS-VC-Latep be the

subset of FS-VC-Notifyp(V') for which the corresponding VC-alert_() message did not reach

VC,¢.

17

not-con(q)

VCp VC_

CommSetp()

VC-alertp(-r)

VC-alertp(+ s)

COMMSETEQ(Com mSet_())

switch(vc, V')

VC-alert_ (-q)

Figure 2: FS-VC-Notifyp(v') (lightly-shaded rectangle), VC-alert,,(), FS-VC-Latep (darkly-

shaded rectangle)

18

The Component Switch protocol for vcp is:

1. The coordinator x sends the switch(VC, V') message using a best effort reliable multi-

cast [14] (a process receiving the message reissues it to all the destination processes).

2. Upon receiving switch(vC, V_), vcp:

(a) logically reorders it to be before vcp sent any of the messages in FS- VC-Latep (this

will be clearer after 3) ;

(b) installs V' as Viewp() and switches control to MCp, in normal mode;

3. MCp handles messages in FS-VC-Lat% as if the corresponding notifications from FSp had

just arrived (i.e. while MOp is executing, and not while vcp was executing). Specifically,

MOp simulates receiving these accessibility notifications in Viewp() = V _.

Proposition 6.1 The Component-Switch Protocol prevents deadlock.

PROOF (sketch) We restrict this discussion to a process p, in view V, switching from its vcp

to MCp component, and suppose q E V. Suppose q never switches from vcq to MCp in view

V. We show this does not prevent p from later switching from MCp back to vcp.

Because p switches to MCp in view V, p has received the sw±tch(VC, V) message. By the

Component-Switch Protocol, p has reissued sw±tch(vc, V) to q. Then either:

1. q never receives switch(vC, V), or

2. q receives switch(vc, V) after having already switched to MCq in view V', with V' _ V.

In the first case, NOTCOMMq(p) holds eventually. In the second, p E V _ contradicts p E

V. Thus, NOTCOMMq(p) holds, and FSp Reciprocity means eventually either p crashes or

NOTCOMMp(q) holds. Once NOTCOMMp(q) holds, p's progress (i.e. switching back to vcp)

is decoupled from q's progress; q cannot be responsible for blocking p. |

7 Concluding Remarks

This paper has shown how to implement virtually-synchronous communication using a three-

component architecture for systems that experiences process crash failures and network par-

titions. The three-component architecture lead us to define a clear semantics for a Failure

19

Suspector(a necessarypart of any live, asynchronoussystem)that guaranteeslivenessof the

VC and MC components. Clearly defining these semantics allows one to implement the Fail-

ure Suspector as a modular tool - distinct from all other components - whose implementation

can take advantage of the characteristics of the underlying network.

Considering a membership service in relation to virtually-synchronous communication also

lead us to better understand the need for a strong-partial compared to a weak-partial member-

ship service. Specifically, a strong-partial membership service (non-intersecting concurrent

views) is naturally related to virtually-synchronous communication. We can understand this

in the following way. The MC component must identify the sender of a message by its signa-

ture crq to ensure that no multicast is delivered in more than one view. This led us to define

a view as a set of process signatures. Considering the increment conditions of seqp, two dif-

ferent views V and V _ trivially have a non-empty intersection. In other words, by requiring

that no multicast be delivered in more than one view, we were led to the partial-strong mem-

bership service. However if we remove the MC component, (i.e. if the membership service

is only defined by FS and vc, without any reference to communication), then the sequence

number seqv has no clear justification. In that case, a view is just a set of process identifiers

(or a set of identifiers and an incarnation number). With this definition, the same vc proto-

col we described would define concurrent views that overlap, providing only a weak-partial

membership service.

References

[1]

[2]

[3]

[4]

[5]

A. E1 Abbadi, D. Skeen, and F. Cristian. An Efficient, Fault-Tolerant Algorithm for

Replicated Data Management. In Proceedings of the 5th A CM SIGA CT-SIGMOD Sym-

posium on the Principles of Database Systems, pages 215-229. A.C.M., 1985.

Y. Amir, D. Dolev, S. Kramer, and D. Malki. Membership Algorithms in Broadcast

Domains. In A. Segall and S. Zaks, editors, Proceedings of the Sixth WDAG; Israel,

pages 292-312. Springer-Verlag, 1992. LNCS 647.

K. Birman and T. Joseph. Exploiting Virtual Synchrony in Distributed systems. In

Proceedings of the 11th Symposium on Operating System Principles, pages 123-138,
November 1987.

K. Birman, A. Schiper, and P. Stephenson. Lightweight Causal and Atomic Group

Multicast. ACM Transactions on Computer Systems, 9(3):272-314, 1991.

K.P. Birman. The Process Group Approach to Reliable Distributed Computing. Tech-

nical Report TR-91-1216, Cornell University, July 1991.

2O

[6]T. D. Chandra and V. Hadzilacos andS. Toueg. T Weakest Failure Detector for Solving

Consensus. In Proceedings of the 11th Annual A.C.M. Symposium on Principles of

Distributed Computing, pages 147-158. ACM, August 1992.

[7] T. D. Chandra and S. Toueg. Unreliable Failure Detectors for Asynchronous Systems.

In Proceedings of the Tenth Annual A.C.M. Symposium on Principles of Distributed

Computing, pages 325-340. ACM, August 1991.

[8] M. Chandy and L. Lamport. Distributed Snapshots: Determining Global States of

Distributed Systems. A.C.M. Transactions on Computer Systems, 3(1):63-75, 1985.

[9] D. Davcev and W. A. Burkhard. Consistency and Recovery Control for Replicated

Files. In Proceedings of the lOth Symposium on Operating System Principles, pages

87-96, 1985.

[10] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of Distributed Consen-

sus with One Faulty Process. Journal of the Association for Computing Machinery,

32(2):374-382, April 1985.

[11] D. K. Gifford. Weighted Voting for Replicated Data. In Proceedings of the 7th Sympo-

sium on Operating System Principles, pages 150-159, December 1979.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

R. A. Golding. Weak consistency group communication for wide-area systems. In

Proceedings of the 2nd IEEE Workshop on the Management of Replicated Data, pages

13-16, November 1992.

F. Jahanian and W. M. Moran. Strong, Weak and Hybrid Group Membership. In

Proceedings of the 2nd IEEE Workshop on the Management of Replicated Data, pages

34-38, November 1992.

T. Joseph and K. Birman. Distributed Systems, chapter Reliable Broadcast Protocols,

pages 293-317. Addison-Wesley, 1989.

L. Lamport. Time, Clocks and the Ordering of Events in a Distributed System. Com-

munications of the A.C.M., 21(7):558-565, 1978.

K. Marzullo and G. Neiger. Detection of Global State Predicates. In Proceedings fo the

Fifth International WDAG, pages 254-272. Springer-Verlag (LNCS 579), 1991. Delphi,

Greece.

P. M. Melliar-Smith, L. E. Moser, and V. Agrawala. Membership Algorithms for Asyn-

chronous Distributed Systems. In Proceedings of the IEEE 11th ICDCS, pages 480-488,

May 1991.

S. Mishra, L. L. Peterson, and R. D. Schlichting. A Membership Protocol Based on

Partial Order. In Proceedings of the IEEE International Working Conf on Dependable

Computing for Critical Applications, pages 137-145, February 1991.

21

[19] A. Ricciardi and K. Birman. Using Process Groups to Implement Failure Detection in

Asynchronous Environments. in Procedings of the Tenth Annual A.C.M. Symposium

on, Principles of Distributed Computing, pages 341-351. A.C.M., August 1991.

[20] A. M. Ricciardi. The Asynchronous Membership Problem. PhD thesis, Cornell Univer-

sity, January 1993.

[21] A. M. Ricciardi, K. P. Birman, and P. Stephenson. The Cost of Order in Asynchronous

Systems. In A. Segall and S. Zaks, editors, Proceedings of the Sixth WDAG; Israel,

pages 341-352. Springer-Verlag, 1992. LNCS 647.

[22] A. Schiper and A. Sandoz. Uniform Reliable Multicast in a Virtually Synchronous

Environment. In Proceedings of the IEEE 13th ICDCS, May 1993.

22

